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Abstract— Humanoid locomotion requires not only accurate
command tracking for navigation but also compliant responses
to external forces during human interaction. Despite significant
progress, existing RL approaches mainly emphasize robustness,
yielding policies that resist external forces but lack compliance-
particularly challenging for inherently unstable humanoids. In
this work, we address this by formulating humanoid locomo-
tion as a multi-objective optimization problem that balances
command tracking and external force compliance. We introduce
a preference-conditioned multi-objective RL. (MORL) frame-
work that integrates rigid command following and compliant
behaviors within a single omnidirectional locomotion policy.
External forces are modeled via velocity-resistance factor for
consistent reward design, and training leverages an encoder-
decoder structure that infers task-relevant privileged features
from deployable observations. We validate our approach in both
simulation and real-world experiments on a humanoid robot.
Experimental results indicate that our framework not only
improves adaptability and convergence over standard pipelines,
but also realizes deployable preference-conditioned humanoid
locomotion. Video can be found in the link.

I. INTRODUCTION

Humanoid robots have become an emerging area of re-
search in recent years, with locomotion being one of the most
actively studied and developed areas. As humanoid robots
are expected to operate in human-centered environments,
locomotion must not only be robust but also naturally inter-
active: humanoids should reliably follow commands while
also yielding to physical guidance from humans. This ability
of force compliance is indispensable not only for safety
and effective deployment, but also for natural and intuitive
collaboration. Without it, humanoids risk exhibiting rigid
or unsafe behaviors when interacting with people, such as
resisting human guidance in emergencies or responding with
unnatural or excessive forces.

Reinforcement learning with massively parallel simulation
has enabled robust locomotion policies [1]-[5]. Recent work
demonstrated walking on challenging terrains [6]-[9], blind
navigation over stairs, push recovery [10]-[12], and stylized
walking from human references [13], [14], showcasing RL’s
versatility for humanoid locomotion.

A key element of these approaches is the introduction of
random force perturbations during training, which encour-
ages the learned policy to remain stable under all conditions
[11, [4], [5], but inherently biases policies toward force
resistance. This training setting is essential for sim-to-real
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Fig. 1: Preference-conditioned locomotion: A single policy realizes behaviors from
command tracking to human-guided compliance by adjusting the preference. Arrows
indicate velocity command (blue), external force (red), and resulting humanoid velocity
(yellow).

transfer, and enables reliable velocity-tracking with push
recovery, while simultaneously hindering force-compliance
behavior.

Additionally, the pursuit of command tracking and force
compliance is conflicting in nature: strong command follow-
ing reduces compliance, while high compliance compromises
responsiveness to current commands. Existing learning-based
methods do not explicitly address this trade-off, and often
compromise task-specific rewards to improve general per-
formance [3], [15], leaving a gap between robust command
tracking and interactive, compliant walking.

To bridge this gap, we regard external force not simply as
perturbation but as a balancing force in continuous compliant
walking, and formulate humanoid locomotion with the trade-
off as a multi-objective optimization problem. A preference-
conditioned MORL framework is introduced with the con-
flicting objectives: (1) following velocity commands, and (2)
complying with sustained external forces. By conditioning
the locomotion policy on a preference vector, a single inte-
grated policy can smoothly interpolate between rigid tracking
and highly compliant walking. This design allows humanoids
to achieve both capabilities without requiring additional
training stages or complex hierarchical architecture.

We evaluate the proposed method in simulation and on
the adult-size humanoid Booster T1. Results validate that
our approach is able to produce deployable omnidirectional
locomotion that adapts flexibly to different given preferences.


https://lengtx20.github.io/morl-humanoid-locomotion/
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Fig. 2: Policy training framework with privileged denoising: An asymmetric actor—critic architecture is extended with an encoder—decoder that reconstructs privileged
observations, guiding the encoder to extract force- and torque-aware latent features. At deployment, only encoder and actor remain, enabling preference-conditioned control with

onboard observations, latent embedding and preference vector.

Unlike conventional policies that focus solely on disturbance

resistance, our method enables humanoids to exhibit a new

locomotion capability suitable for human-centered environ-
ments. The main contributions of this work are three-fold:

« We formulate humanoid locomotion as a multi-objective
problem, where a velocity-resistance model provides a
unified representation of commands and external forces,
enabling consistent and comparable reward design.

e We propose a preference-conditioned MORL frame-
work that learns a single unified policy capable of con-
tinuously balancing these objectives without hierarchical
controllers or staged training.

« To our knowledge, this is among the first demonstrations of
humanoid locomotion, validated in both simulation and
real-world deployment, that achieves adaptive and de-
ployable behaviors across different interaction preferences,
especially demonstrating force-compliance.

II. RELATED WORK
A. RL-based Humanoid Locomotion

Reinforcement Learning has become a prominent ap-
proach for humanoid locomotion, with policies trained in
large-scale parallel simulation and deployed zero-shot on
hardware. Open-source frameworks [1], [4], [5] provide stan-
dardized environments and scalable pipelines, accelerating
progress on robust and deployable locomotion policies for
quadrupeds and humanoids.

A key paradigm in recent works is the asymmetric ac-
tor—critic architecture, where the critic has access to full
states while the actor is constrained to partial observations.
Teacher—student schemes further leverage historical observa-
tions to help the student policy infer task-relevant features.
For example, RMA [7] adopts a two-stage pipeline: a teacher

policy is trained in the first stage with privileged information
only available in simulation, and a student policy is distilled
to rely only on deployable observations and latent embed-
dings. A-RMA [8] extends this to a three-stage procedure
with an additional policy refinement process to adapt to a
bipedal robot. More recently, [9] streamlined this paradigm
into a single-stage framework, jointly training encoder and
policy to enable zero-shot humanoid deployment. We build
upon these advances and adopt Booster Gym [5] as the
fundamental codebase and baseline environment.

B. Multi-Objective RL for Robotics

MORL has been widely applied in robotics, where ob-
jectives naturally conflict [16]. In animation and motion
generation, it has been used to balance fidelity, style, and user
control, as in AMOR [17] and [18], demonstrating strong
performance across both robotics and animation domains.
Furthermore, studies of biological and robotic gaits highlight
inherent trade-offs among speed, energy, and stability [19],
which further motivates the use of MORL in locomotion.

Building on this perspective, recent work has applied
MORL to legged robots, coordinating objectives such as
velocity tracking, torque cost, robustness, and whole-body
control [20]-[22]. While these approaches show promis-
ing results, the objectives are typically indirectly conflict-
ing—such as speed versus energy efficiency or fidelity versus
robustness—where improvements often emerge from smooth
trade-offs rather than explicit opposition.

Instead, our work focuses on a pair of directly conflicting
objectives: velocity command tracking and force compli-
ance. These two behaviors are inevitably opposed, as rigid
command following tends to resist external forces, whereas
compliant responses require following force at the expense of
command accuracy. This remains an underexplored problem.



C. Locomotion with Force Adaptation

Learning-based approaches have begun to address locomo-
tion under external forces. Advances in RL-based method has
enabled legged robots to remain robust under perturbations
and heavy loads [1], [7] and exert force needed for loco-
manipulation tasks [23], [24]. However, force compliance is
overlooked: while training policies to resist external forces,
it makes compliant human guidance difficult and often pro-
duces unnatural reactions.

To encourage force-adaptive behaviors for legged robots,
several works propose dedicated RL-based methods, while
primarily focusing on quadruped locomotion or loco-
manipulation tasks. Hartmann et al. [25] introduced compli-
ant quadruped control through a recovery stage during train-
ing. HAC-LOCO [26] adopts a hierarchical design where a
high-level residual module modulates a robust low-level pol-
icy. FACET [27] instead imitates a spring—impedance refer-
ence through a two-stage teacher—student pipeline with adap-
tive parameters. FALCON [28] addresses loco-manipulation
with a dual-agent design and torque-limit-aware 3D end-
effector force curricula, while the lower agent focusing on
the supporting manipulation goals.

While these methods demonstrate effective adaptation in
their respective domains, their assumptions and architectures
do not directly transfer to humanoid locomotion, where
balance is significantly more fragile than quadruped and
omnidirectional walking itself is already a challenging task.

In contrast, our work addresses humanoid locomotion
exclusively, aiming to unify velocity command tracking
and external force compliance in a single policy. To
our knowledge, our method is among the first to realize
preference-conditioned force adaptability in humanoid omni-
directional locomotion, complementing prior quadruped and
manipulation-focused compliance frameworks.

III. METHOD

In this section, we present our method for learning a
humanoid locomotion policy that balances command track-
ing and force compliance. We first align the velocity and
force from the perspective of a consistent velocity-resistance
model (Section III-A). Then, we formulate the problem as
a MORL task with preference conditioning (Section III-B).
Building on these, we establish our training framework to
obtain adaptive and deployable policy (Section III-C).

A. Velocity-Resistance Modeling of External Force

We formulate humanoid locomotion as balancing velocity
tracking and force compliance in the horizontal plane, while
vertical dynamics, which is commonly related with complex
terrains, is beyond the scope of this work. Both linear and
angular velocities are considered, corresponding respectively
to external forces and torques. In practice, we envision the
robot to respond in a steady and continuous manner when
guided by external forces, e.g., maintaining gentle contact
with a human hand during interaction.

To balance command tracking and force compliance
within a single locomotion policy, velocity commands and

external forces must be expressed in a comparable form.
However, they inherently lie in different physical spaces.
To unify them, we adopt a velocity—resistance perspective
that maps sustained external forces into equivalent velocities,
allowing both objectives to be represented consistently in the
reward function.

In many physical systems, resistive forces scale linearly
with velocity, as in viscous damping:

Fles = —B -, (1)

where B is an effective damping coefficient. At steady state,
external and resistive forces balance, yielding

Foyy + Fres =0 = ’U%Bil'Fext. 2)

This formulation is physically suitable for humanoid lo-
comotion: (i) human-applied forces are typically slow and
low-frequency, making the steady-state approximation rea-
sonable; (ii) it induces intuitive compliance—robots move
only while being pulled, and stop naturally once the force is
released; and (iii) it avoids oscillatory or unstable behaviors
that can arise from high-order dynamics.

For training, we adopt a simplified mapping

Vext = k - Fox, (3)

where k is a scalar gain acting that normalizes the equivalent
velocity to a feasible range. This approximation is not in-
tended to replace full impedance control for high-bandwidth
interaction, but rather provides a stable, interpretable, and
physically grounded mechanism that makes external forces
directly comparable to velocity commands during locomo-
tion training with RL.

B. Multi-Objective Reinforcement Learning Formulation

We formulate humanoid locomotion as a multi-objective
reinforcement learning problem.

The standard locomotion problem is modeled as a
Partially Observable Markov Decision Process (POMDP)
(8,0, A,p,r,7), where S, O, A denote the state, observa-
tion, and action spaces, p(s’|s, a) the dynamics, r the reward,
and v the discount. Policy is represented by m(alo). In
MORL, the reward is extended to a vector

r(s,a) = [Tl(sva)v'“vrn(saa)]a 4)

capturing multiple, possibly conflicting objectives. The goal
is to approximate the Pareto front of optimal trade-offs. To
this end, we adopt a preference-conditioned policy 7 (a|o, w)
with weight vector w = [w1,...,wy,],s.t. Y . w; = 1. The
policy maximizes the expected return:

J(miw) =E p. [Z vir(se, ar) - W:|. ®)
t=0

Sampling diverse w during training enables the policy to
cover a family of Pareto-optimal solutions.

For humanoid locomotion, we consider three objectives:
command tracking (r.), force compliance (rf), and regu-
larization (r,.):

ro = exp (- L), ©®)



rf = exp ( _ ”U_ko'-Fele2)7 (7)

where o is a hyperparameter. r. measures the accuracy of
command tracking, and 7, quantifies compliance to external
forces in a comparable approach. The regularization term
r is the sum of all additional rewards (e.g., base height,
energy cost and stability penalties). For our task, w. and wy
are constrained such that w. +wy = 2.

C. Policy Training with Privileged Denoising

Learning force compliance is challenging since external
forces cannot be directly measured without tactile sensors.
Inspired by [9], we design a one-stage privileged denoising
framework, where the encoder infers force-related features
from historical observations (see Figure 2)

1) Observation and Action Space: The actor receives de-
ployable observations o (proprioception, velocity commands,
gait features, etc.), while the critic additionally accesses priv-
ileged information o” (e.g., external forces, linear velocities),
available only in simulation. The action is the desired joint
position a = qges. A detailed specification of observations is
shown in Table I.

TABLE I: Observation Space

Components Dim Critic Actor

Preference Vector

Velocity Commands

3
3
Projected Gravity 3
Angular Velocity 3
Gait Signal 2
Gait Frequency 1
Joint Position 12
Joint Velocity 12
Last Action 12
Body Center of Mass

Body Mass

AN N N N N NN

3
1
Linear Velocity 3
Body Height 1
Pushing Force 3

3

NN N N N N N N N NENENEN

Pushing Torque

2) Network Architecture and Training Pipeline: We
adopt an asymmetric actor—critic structure with an en-
coder—decoder module. The encoder maps the stacked his-
torical observations oy = (0t—7+1, ..., 0t—1, 0¢) into a latent
embedding z;, and the decoder reconstructs privileged states
of, encouraging z; to encode task-relevant features. The actor
is conditioned on (o, z¢, w) and outputs joint commands
tracked by a low-level joint PD controller, while the critic
has access to both observations and privileged observations
(04, 0%) without requiring the embedding.

During training, the actor and critic are updated using PPO
[29], with the MORL rewards defined in Section III-B. For
additional implementation details of the rewards, please refer
to [5]. To obtain a deployable policy, we employ a curriculum
learning strategy together with domain randomization (DR).
Training begins on flat terrain without velocity perturbations
(sudden velocity impulses), which are gradually increased

as training progresses. The environment is then switched to
uneven terrain after half of the training. External forces are
randomly applied during training, resampled every 30 s from
U(-50,50) and later narrowed to U(—20,20) to increase
sensitivity to subtle interactions. The preference weight w,
is resampled each episode from U(0,2) with wy = 2.0 —
we, while w, is randomly sampled from U(1, 2) to improve

robustness.
The encoder—decoder is optimized jointly with reconstruc-

tion losses:
Ldenoising = ||0Ap - Op||2 ®)

Ldenoising,force = HF;XI - Fext||2 (9)

where oP is the estimated privileged observation. The second
term is introduced to emphasize force-related features.

At deployment, only the encoder and actor are used, pro-
ducing a policy that adapts online according to the preference
vector. For evaluation, the regularization weight is fixed to
w, = 1 for consistency and better robustness.

IV. SIMULATION EXPERIMENTS AND ANALYSIS

The policy is trained in Isaac Gym [30] with 4096 parallel
environments. Each episode lasts 20 seconds with conditional
early termination, and training is run for 20,000 epochs.
All experiments are performed on the Booster T1 humanoid
model at a 50 Hz control frequency, are tested after sim-to-
sim to Mujoco [31] integrated in the codebase.

Direct comparison with quadruped- or manipulation-
focused methods is not meaningful due to differences in
morphology and task setup. Therefore, we evaluate our
approach against a strong humanoid locomotion baseline
built on Booster Gym [5]. The baseline policy adopts the
same structure but is not specifically trained for force
compliance (i.e. trained without force compliance objec-
tive). In the following sections, we first examine whether
our preference-conditioned MORL policy (MORL policy
in short) can learn a Pareto front that captures the trade-
off between command tracking and force compliance. We
then evaluate its adaptability when preference weights are
switched online, compare its training convergency against a
single-objective RL pipeline, and finally assess its robustness
under unexpected perturbations.

A. Pareto Front across Different Preferences

To demonstrate its optimality and adaptability across
multiple objectives, we evaluate the policy under command
weights from 0.0 to 2.0 with interval 0.1 and corresponding
wy =2 — we.

First, the robot operates in the opposite setting: it is
commanded to walk forward with a constant velocity while
subjected to three levels of backward force. The average
forward velocity v,, is recorded for each trial. Similarly, an-
gular velocity tracking is tested with constant yaw commands
under three levels of external torque. For visualization,
rewards for each objectives are expressed as mean squared
errors (MSE):

re = MSE(vy, ve,z) (10)
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force (30 N).

rp = MSE(vy, k- Fay) (11)

The results in Figure 3 show Pareto fronts (upper panels)
and velocity responses (lower panels). From the results, we
observe that the majority of solutions are non-dominated, i.e.,
they cannot be improved in one objective without degrading
another, and thus lie on the Pareto-front (PF). This indicates
that our training strategy can effectively approximate the
Pareto-optimal set. The PF exhibits an approximately mono-
tonically decreasing trend, further confirming the strongly
conflicting nature of this locomotion problem. Moreover, the
smoothness of the curve suggests that our policy provides
a continuous and feasible solution space, accommodating
arbitrary user-specified preferences.

We further test an orthogonal setting where forward ve-
locity is commanded while lateral forces are applied. As
shown in Figure 4, the policy produces diagonal walking
by combining both objectives, whereas the baseline fails to
adapt and mainly tracking command.

During all experiments, the MORL policy succeeds with-
out any unstable behaviors or falls, validating the reliability
of our training setup. The policy demonstrates a smooth
trade-off between tracking and compliance across preference
weights. When w. = 2.0 (and wy = 0.0), the MORL policy
achieves comparable tracking accuracy to the baseline. For
smaller w,, it exhibits significantly stronger compliance to
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Fig. 5: Online switching of command weight: The trajectory lasts for 12 seconds
with the command weight changed every 4 seconds. The robot is applied constant
Ve,z = 1.0m/s, Foy = 20N,w. = 1.0rad/s,7 = 5N - m separately. The
policy’s behavior changes corresponding to the command weight.

external forces, which the baseline lacks due to its force-
unaware training. These results confirm the effectiveness
of the proposed method in integrating competing objectives
and highlight its versatility in adapting to diverse interaction
demands.

B. Adaptation to Online Preference Switching

Furthermore, the MORL policy demonstrates the ability
to adapt online when preference weights are switched during
walking. The humanoid is tested under two separate condi-
tions: either commanded with a constant forward velocity
V¢, Or subjected to a constant external force Fiy, with the
forward velocity reward weight w, switched twice during
each trial. Similarly, angular velocity and torque tracking are
evaluated under analogous separate conditions.

As shown in Figure 5, the policy transitions smoothly
between behaviors without instability or sudden performance
degradation, achieving performance comparable to the base-
line on single-objective tracking. In contrast, the baseline
policy supports only a single motion mode. These results
highlight that the MORL framework not only provides a
continuous spectrum of trade-offs but also enables seamless
online preference adaptation, a critical capability for inter-
active humanoid deployment where task priorities may shift
dynamically.

C. Ablation Study: MORL vs. Single-Objective RL

To further validate the effectiveness of our approach, we
conduct an ablation study against a standard single-objective
RL (SORL) pipeline trying to capture multiple objectives.
In the single-objective setting, the trade-off is modeled as a
scalar sum of rewards for conflicting objectives, with fixed
weights w, = wy = w, = 1. Both MORL and SORL use
identical network architectures, optimizer settings, reward
functions and amount of training steps (10,000 epochs);
only the preference sampling differ. The comparison of the
training curves is reported in Figure 6.
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The MORL policy achieves consistently higher rewards
and improved training stability compared to SORL, with
the privileged denoising process also converging faster.
Counterintuitively, under extended conditions with varying
preference weights and resampling process, the convergence
speed and final performance of MORL are not weakened but
instead enhanced, suggesting that a preference-conditioned
scheme is crucial for fostering an integrated policy. This
improvement likely stems from the inherent conflict between
objectives. After training, the MORL agent develops adaptive
locomotion skills, whereas the SORL policy fails to learn
even basic walking skill and remains unstable. These results
highlight the advantage of explicitly modeling conflicting ob-
jectives with MORL, leading to both more efficient training
and superior emergent performance.

D. Robustness under Instant Perturbation

The test duration for this experiment is 20 seconds. The
perturbation is modeled as an external force with fixed mag-
nitude but random orientation. At every S-second interval, a
1-second force impulse is applied to the robot’s base link.
We evaluate four different policy settings: (1) baseline policy,
(2) MORL-c policy with w.,wy = [2,0], (3) MORL-m
policy with w., wy = [1,1], and (4) MORL-f policy with
we,wy = [0,2]. Three levels of force magnitude are tested:
Fexe = 30N, 40N, 50N. Each experiment is repeated 20 times
for statistical reliability.

Two metrics are used to evaluate policy performance:

o Success Rate: The proportion of trials in which the
humanoid doesn’t fall during the testing time.

« Peak Torque: The average of the maximum root-mean-
square (RMS) torque across all joints for each success-
ful trial. For each trial, the RMS torque is computed
over time for each joint, then the maximum RMS value
among all joints is selected and are averaged over all
successful trials. Only successful trials are considered
to avoid spurious values from post-fall twitching.

The results in Table II indicate that while all policies per-
form equally well under mild perturbations (30N), MORL-
based policies exhibit greater robustness at higher force
magnitudes. In particular, MORL-f consistently achieves the
highest success rates without increasing joint torque. Even
under 50N perturbations, MORL-m and MORL-f maintain
a 50% success rate, whereas the baseline fails completely.

TABLE II: Results of External Perturbation Experiments

Force Policy baseline ~ MORL-c ~ MORL-m  MORL-f
30N Success Rate 100% 100% 100% 100%
Peak Torque 15.542 14.677 15.249 14.457
Std +0.214 +0.146 +0.184 +0.174
40N Success Rate ~ 45% 90% 85% 100%
Peak Torque 15.282 14.864 15.249 14.635
Std +0.165 +0.317 +0.237 +0.394
SON Success Rate 0% 35% 50% 50%
Peak Torque - 14.758 15.229 14.589
Std - +0.388 +0.201 +0.408

Moreover, in most cases, greater policy compliance corre-
sponds to lower peak joint torque. These findings highlight
the robustness advantage of MORL agents in terms of both
stability and compliance.

V. REAL-WORLD EXPERIMENTS

We validate the proposed MORL-based locomotion policy
on the Booster T1 humanoid robot through a series of
hardware experiments. These experiments are designed to
demonstrate two key aspects: (1) adaptability to different
objective preferences, and (2) performance at specific pref-
erence settings. All experiments are documented in the sup-
plementary video for clearer demonstration of the policies’
performance.

A. Adaptability to Different Preferences

To evaluate adaptability, we conduct experiments under
three preference settings identical to those in Section IV-D.
The robot is guided either by joystick velocity commands or
by consistent human-applied forces. The results are exclu-
sively shown in the complement video.

As the force compliance weight wy increases, the robot
responds more readily to external forces, following hu-
man guidance with minimal resistance. Conversely, higher
command-tracking weights w, lead to faster execution
of joystick inputs and stronger resistance against external
forces. The baseline policy lacks such flexibility, focusing
only on velocity tracking and becoming unstable under
sustained human forces.

This experiment provides the most intuitive evidence that
MORL enables real-time trade-offs between command track-
ing and force compliance.



Fig. 7: Omnidirectional force-compliance walking: (a)(b)(c) shows the baseline
policy with force in x,y and yaw direction. (d)(e)(f) shows our policy with force in
x,y and yaw direction. The screenshots represent typical reading of the dynamometer
in each case.

B. Cross-Directional Walking

Beyond balancing between tracking and compliance, we
further evaluate whether the policy can integrate multiple ob-
jectives simultaneously. Drawing from observations in earlier
experiments, we choose preference weights we,wy,w, =
[1.5,0.5,2.0], which provide a practical balance between
command tracking and force compliance. With this configu-
ration, the robot is commanded to walk forward or laterally
while being subjected to orthogonal external forces, as illus-
trated in Figure 1(b). Demonstrations of these experiments
are provided in the supplementary video.

Under these settings, the robot consistently produces diag-
onal walking, effectively combining the commanded velocity
and the compliant response to external forces. This emergent
behavior highlights the MORL policy’s ability not only to
trade off between objectives, but also to synthesize them into
coherent locomotion strategies in real time.

C. Force-Compliance Locomotion

We further assess force compliance, one of the distinguish-
ing features of our approach. Using weights w.,wy, w, =
[0.0,2.0,2.0], we pull the robot with minimal effort, mea-
suring force with an external dynamometer Figure 7. The
dynamometer is attached to the robot’s neck, shoulder and
hand with respect to forces in the x and y directions and
torque around the z axis. Our MORL policy requires only
about 10N to move the robot smoothly and efficiently,
while the baseline demands over 25N and often exceeds the
30N measurement limit. Additionally, the baseline policy
generates singular actions to resist to the torque applied,
making it impossible to measure with dynamometer, while
our policy still remains gentle and stable. These results
confirm the superior compliance of our method compared
to existing locomotion frameworks.

The experiment in different outdoor environments is also
conducted. In Figure 8, the robot is guided by hand-pulling
and successfully traverses diverse terrains, including rough
ground, a soccer field, raised surfaces, and others. The videos
qualitatively showcase the practicality and robustness of our

Fig. 8: Force-compliance walking in outdoor scenarios: (a) soccer field, (b) rough
ground, (c) wooden ground, (d) smooth surface, (e) raised ground, (f) soft grass. The
robot is guided by the human operator pulling its arms. The shoulder joint are kept
flexible with a small pre-set k;, = 1. No supportive force is exerted to the robot.

e under

Fig. 9: Perturbation r P
represents the direction of the strike. (a) Impact of a 2-kg ball, the robot maintains
balance while maintaining position. (b) Impact of a 4-kg ball, the robot steps back but
remains stable.

ded-ball impacts. The red arrow

policy. Across all scenarios, the robot exhibits smooth, stable,
and compliant walking behaviors, responding reliably to
subtle guiding forces applied by the human operator.

D. Robustness to Instant Perturbation

To provide an additional indication of robustness on real
hardware, we evaluate the system under sudden external
impacts by swinging a suspended ball to strike the robot.
As depicted in Figure 9, a ball is hung from the ceiling and
released manually to hit the robot. The preference weight is
set to be w,, wy,w, = [1.0,1.0,2.0]

The experiments show that the MORL policy can with-
stand unexpected impacts from balls weighing up to Skg
without falling (as in the video). The robot adapts by taking
backward steps and absorbing the force through compli-
ant motion. These observations align with the disturbance
tolerance seen in simulation, providing additional empirical
support, though this test is not the primary focus of our work.

VI. CONCLUSION

In this work, we introduced a preference-conditioned
multi-objective RL framework for humanoid locomotion,
which integrates command tracking and force compliance
through a velocity-resistance model. The approach is simple



and effective, requiring no hierarchical control or multi-
stage training, and enables a single policy to interpolate
smoothly between rigid tracking and compliant behaviors.
An encoder—decoder architecture inferring force-related la-
tent features further allows the policy to be deployable on
real humanoid hardware without direct force sensing.
Simulation and hardware experiments demonstrate that our
method could generate adaptive and force-compliant omni-
directional walking. Beyond demonstrating feasibility, this
study highlights preference-conditioned MORL as a general
and versatile method for interactive humanoid locomotion,
with opportunities for future extensions to richer tasks such
as full loco-manipulation and higher-dimensional objectives.
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